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The t e m p e r a t u r e  field and the r a d i a t i v e - c o n d u c t i v e  heat  flow in a cyl indr ical  l aye r  of a 
weak ly -absorb ing  medium a r e  computed.  

We consider  a cyl indrical  l aye r  bounded by su r faces  with ref lec t ion fac tors  R t and R 2 and filled by a 
medium with absorpt ion  coefficient  a v ,  r e f r a c t i v e  index nv, and molecu la r  the rma l  conductivity h M. 

In solving the p rob lem of the t e m p e r a t u r e  field in the l ayer  with given t e m p e r a t u r e  at its boundar ies ,  
we make the following assumpt ions .  

1. The the rma l  flows due to molecu la r  the rmal  conductivity and rad ia t ive  heat  t r an s f e r  can be c o m -  
bined additively.  

2. The absorpt ion  and natura l  radia t ion in an e l emen ta ry  volume of the medium a re  linked by K i r c h -  
hoffls law: 

3. 

4. 

With these assumpt ions  we solve the equation 

div (QM -[- QI~) = 0 

where  e~ is the volume coefficient  of radia t ion of the medium.  

The quantities coy, n v , and X M a re  independent of the t e m p e r a t u r e  within the l imi ts  of the t e m p e r a -  
ture di f ference between the wal ls .  

The su r faces  bounding the l aye r  re f lec t  uni formly  in all d i rec t ions .  

with the boundary conditions 

7' (r3 = T,, 

T (r2) = T~, 

(1) 

(2) 

where  QM is defined by F o u r i e r ' s  law. To find QR we solve the radia t ion intensity t r anspor t  equation 

dl~ - -  a~l~ + 2 
dS --- r (3) 

For  each fixed direct ion S, defined by the two angles 0 and y, the der iva t ives  of the intensity along the radius  
and along the fixed direct ion S a r e  linked by the equation 

dI dI dr 

dS dr dS ' (4) 

where  

dr _ I l"-r~ - -  r~ sin ~ 0 I cos y, (5) 

Insti tute of Crys ta l lography ,  Academy of Sciences of the USSR, Moscow. Trans la ted  f r o m  Inzhenerno-  
Fizicheski i  Zhurnal ,  Vol. 18, No. 1, pp. 31-38, January ,  1970. Original  a r t i c l e  submit ted  January  27, 1969. 

�9 1972 Consultants Bureau, a division o[ Plenum Publishing Corporation, 227 West 17th Street, New York, 
N. Y. 10011. All rights reserved. This article cannot be reproduced [or any purpose whatsoever without 
permission of the publisher. A copy o[ this article is available from the publisher [or $15.00. 

22 



Fig .  1. N o r m a l  s ec t i on  of the c y l i n d r i c a l  
l a y e r .  

and 0 i s t h e  angle  be tween  the p r o j e c t i o n  of S on a n o r m a l  

s e c t i on  of the cy l i nde r  and the g r e a t e s t  d i a m e t e r  of the 

c y l i nde r ;  y is the angle  which the v e c t o r  g makes  with the 
p lane  of the n o r m a l  s ec t ion  in the  p lane  0 = cons t  ( s ee  F i g .  

1). The d e r i v a t i v e  d r / dS  changes  s ign  at  the point  r = r 2 
s i n  0. F r o m  (4) and (5), Eq. (3) takes the f o r m  

dl~ + I I r = -  rgsin =0]. 
dr r cos y r + q- ~ * - -  =-- a~n~sv ,.. (6) 

cos y = ~I~- 2 - -  %nv%. (7) 
dr r 

The s ign  "+" c o r r e s p o n d s  to the d i r e c t i on  in  which r i n -  

c r e a s e s ,  the s ign  " - "  to that in which it d e c r e a s e s .  

We a l so  have to d i s t i ngu i sh  the d i r e c t i o n s  which i n t e r -  

sec t  the i n t e r n a l  s u r f a c e  of the l a y e r  (0 _< 0 _~ 00, s in  00 = r l  
/r2) and those which do not  (00 -< 6 -< lr/2).  The b o u n d a r y  
condi t ions  can  be w r i t t e n  as 

I *  (q, O, y) = e(T,) n~(l - - R , )  + R J - ( q ,  O, ?), 

l - ( r2 ,  O, y ) = e ( T2) n~ ( l - - R ~)  + RaI+ (rz, O, y); 

0 ~C 0 :5  0o, 

I -  (r e, 0, y) = e (Tz) n 2 (I - -  R2) + R21 + (r2, O, y), 

co < o .-/.. ~ (8) 
2 

By so lv ing  (6) and (7) with the b o u n d a r y  cond i t ions  (8), we c a n  obta in  the d i f f e rence  I + - I - .  We know that 

in  the g e n e r a l  c a s e  the r a d i a t i v e  componen t  of the hea t  flow can  be e x p r e s s e d  as 

j j '  (i  + - i - )  cos s)d e , (9) 

w h e r e  dw is the e l e m e n t  of so l id  ang le .  

It can be shown that for  a c y l i n d r i c a l  l a y e r  

cos  (r, S) dee = r~ cos 0 cos 2 y dOdy. (10) 
/ ,  

Subs t i tu t ing  I + - I -  and (10) in (9), we ob ta in  an e x p r e s s i o n  for  the r a d i a t i ve  heat  flow 
r 

r .1 cosy , Or' 
0 0 0 r z 

x + - -  r! 0e x' - -  x l Oe_ " e - - a  - - d r "  
-i- exp --c~ cos y / ~ dr' -t-R1 xp cos y Or' 

r2  r~ 

r~  r 

~os y / Or' R tR ,  exp - -  cc cos~, ~ dr' dt 
, r 

r l  f t  

+ Z -- exp - -  a - - d r '  - -  exp ~ - - -  cos y Or' ~- dr' �9 . cos ~/ . Or' 
r l / r z  r,. .t  r 

' X -1- x' Oe dr' R2 a ' -]- exp - -  a - -  - -  
, cos y &' cos y , 

r f l  r f l  

ae dr' - -  R2 exp - -  cz de_ dr' @ R2 a 
• Of - - 7  cos y / Or' cos y , Or J 

r r~l  

* In what  fol lows the s ign  of the modulus  and the s u b s c r i p t  u wil l  be  omi t ted .  

(11) 
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F i g . 2 .  T h e  n o n d i m e n s i o n a l  r a d i a t i v e  h e a t  f l o w  # a s  a 

f u n c t i o n  of  ~ f o r  R l = R 2 = 0 - a ;  f o r  R 1 = R 2 - b ;  and  f o r  

R 1 * R 2 - c :  a) 1 - c ~ L  = 0; 2 - 0 . 1 ;  3 - 0 . 2 ;  4 - 0 . 3 ;  b) 1 

- o~L = 0; R 1 = R 2 = 0; 2 - 0.2 and  0; 3 - 0 and  0.2; 4 - 0.2 

and  0.2; 5 -  0 and  0.3;  6 - 0.2 and  0.3; 7 -  0 and  0.5; 8 

- 0.2 and  0.5; 9 - 0 and  0.9; 10 - 0.2 and  0.9; c) 1 - a L  

= 0; R l = 0, R 2 = 0.2; 2 - 0 .2,  0, 0.2; 3 - 0.2, 0.2,  0; 4 

- O, O, 0.9; 5 - 0.2, O, 0.9; 6- -  0.2, 0.9, O. 

w h e r e  

x = - =  ] r2 - -  r~ t2., x '  = V (r')  ~ - -  r~t 2 ," r;  = ~ " r ~ .  r ] t . ,  

~; = V ~ -  ,~t ; l = s i . 0 ;  

1 1 

( ") ( "; ) ' - - 2 a  - .  1 - -  R,, exp ....... 
r~ - -  r, ' ~ '--2~z 

1 - -  RaRz exp , cos y " , cos ~} 

E q u a t i o n  (1), w h i c h  h a s  the  f o l l o w i n g  f o r m  f o r  a c y l i n d r i c a l  l a y e r :  

/ d2T 1 dT 'i 1 
)~M ( ~r2 -]- -r ~ r  ] d (rQR) 

, , r dr 

w h e r e  QR is  d e f i n e d  by  (11) ,  i s  in g e n e r a l  a n o n l i n e a r  s e c o n d  o r d e r  i n t e g r o - d i f f e r e n t i a l  e q u a t i o n .  

In  w h a t  f o l l o w s  w e  c o n s i d e r  a l i n e a r  a p p r o x i m a t i o n  of  t h i s  e q u a t i o n ,  i . e . ,  t h e  c a s e  w h e n  

AT T<<i 
and we retain only the linear term in the expansion of Planek's function: 

de . de dT 

Or" OT d r ' '  

M a k i n g  the  s u b s t i t u t i o n  
dT 

- -  =~(r)u(r), 
dr 

(12) 

(13) 

(14) 

(15) 
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w h e r e  

AT 
(r) ( 1 6 )  

r I n  r~  

[s the e x p r e s s i o n  for  the t e m p e r a t u r e  g rad ien t s  in the l a y e r  when QR = 0 and u ( r )  is a funct ion to be  def ined,  
we so lve  (12) by the method of s u c c e s s i v e  app rox ima t ions ,  taking u ( r )  = 1 as the ze ro  o r d e r  approx ima t ion .  

We can only obtain u ( r )  in analyt ic  f o r m  fo r  c e r t a i n  spec ia l  c a s e s .  

The  g r e a t e s t  i n t e r e s t  is in the solut ion of the c a s e  when a L  is a sma l l  p a r a m e t e r  (L  = r 2 - r l )  , in 
t e r m s  of which the in tegra l s  in (11) depending on a L  a r e  expanded.  Having obta ined u ( r )  in analyt ic  f o r m  
and then,  us ing  0-5) and 0-6), and the boundary  condi t ions  {2), a f t e r  a p p r o p r i a t e  t r a n s f o r m a t i o n s ,  we obtain 
an e x p r e s s i o n  fo r  the t e m p e r a t u r e  d i s t r ibu t ion  and the hea t  flow in the f i r s t  app rox ima t ion  

~v 

( T T 1  + AT 

o (17) 

, . ' . Inr 

w h e r e  

and 

f, (rl, r=)=: ,l~ arcsin .~__r,1 --F3~ ;Vq 2 _ r 2  _ 2~ arecos :~1 a(~l=ln~--~') ln~ln'l n ( ~1 ' ~ - '  r~,~_') 

fa 01, ~) == 3r If ~1 ~ - -  ~a _1_ 2~ 1, arcsin ~ 
n 

r a~ f _ r l  . 
--2r os " krl =arccos (rl'a-kr~2); ~ 1 - ,  g ' - - - ,  

TI ~1 2 r a r a 

{ t Q = - -  ~p (r) 2~., q- nL -aT  
0 

n W  (Rp Ra, c~L, ~)d~},  

5 

~F = ,% (R,, G)O, (~) -- a t=  ~ F,, (R,, G) 0,,  (0; 

a = 2  

~tn~, 1 ( 6 ~ 1 - - ~ 2  q . n ~  + 3arcsin~ 0 , (~)  = i ~ "  0~(r (1 __r o 

- -  4~2 arcc~ ~ d- arcc~ ~ q ~ (1 - -  ~ ) l n  ~ 2n '),; @a (~) (lln~-- ~)~ 

• (2~]/'1--~2 -k 2arcsJn~); q)~(~) ln~ n~;  ~s(~) i 
(1  - -  ~ ) '  (1  - ~)~ 

• (6~ Vq - -  ~2 + 4arcsin ~ - -  n~ ~ - -  4~ 2 arccos ~ + 2arccos ~ - -  n); 

F, - - i  + R1 + R2 - -  R1R2, Fz 1 F~ 2R2 (I - -  R,) '~ = _ _  . = ; . . . .  ; 
1 - -  R1R2 (1 - -  R1R~) ~ 

F 4 =  2 R l ( I - - R 2 )  2;  F s = D  = R ~ - - R 1  -. 
(1 - -  R,Ra) ~ 1 - -  R~R~ 

( 1 8 )  

It is easy  to v e r i f y  that (17) and (18) a r e  c o r r e c t ,  s ince  they mus t  tend to the c o r r e s p o n d i n g  e x p r e s s i o n s  
f o r  a f la t  l a y e r  as  [ - *  1. 

Put t ing  

Q==r: t+L,  r : : - r , + y  (19) 

and making the expans ions  in s e r i e s  

2S 



l n ~ , : . : l n  r := ln ( t -+ -  rl-~J ') ~ y Y2 ya 

r2 _ _ r  2 

arcsin~==arcsin Q : = : a r c c o s - -  _~- 
Q 2 

V r ] .  r; 
r 2 

(20) 

and then, having substi tuted (20) in (17) and (18), and finding the l imi t  as r l / r 2 - -* l  , Y / r 1 - - 0 ,  L / r l ~  0, we 
obtain the cor responding  express ion  for  the f lat  l ayer  [1]. 

By consider ing (17) and (18) we see  that the t e m p e r a t u r e  distr ibution in a cyl indr ical  l ayer  with weak 
absorpt ion depends on the optical  p rope r t i e s  of the walls only when they have different  ref lect ion f ac to r s .  

In consider ing the express ion  for  the heat  flow we draw attention to the fact  that when there  is conduc-  
tive and rad ia t ive  t r anspor t  the heat  flow is propor t iona l  not to the r e a l  gradients  in the l aye r ,  but to 9 ( r ) ,  
i .e . ,  the influence of radia t ive  t r anspor t  on the heat  flow is equivalent to a change in the coefficient  of t h e r -  
mal  conductivity of the s y s t e m .  The coefficient  of propor t ional i ty  between Q and q~(r) can be t rea ted  as the 
effect ive the rma l  conductivity of the l aye r .  It is s ignificant  that the effect ive the rmal  conductivity is not a 
constant  of the medium,  s ince it depends not only on its t he rma l  and optical  p rope r t i e s  and the optical  p rop -  
e r t i e s  of the su r f aces ,  but a lso  on the d imensions  (L) and the configuration of the s y s t e m  (the p a r a m e t e r  
D. 

If o~ v is r ep laced  by the Rosse land mean and we neglect  the dependence of R1, R 2 on v, then ~, becomes  
the nondimensional  rad ia t ive  heat  flow 

T == 
Q --QM 

(r) nLi OTOe n,Zd v 
0 

(21) 

We consider  ~I, as a function of ~ for  three  different  ea ses .  

1. The layer  is bounded by absolutely black wal ls .  

On F ig .2a ,  ~I, is shown as a function of ~ for  var ious  values  of o~L when R 1 = R 2 = 0 (dotted curves ) .  
The f i r s t  t e r m  in ~I,, which is independent of a L ,  desc r ibes  the change in the heat flow due to heat  t r ans f e r  
between the wal ls .  The function ~l(~) is shown in F ig .2a ,  by a continuous l ine.  As the a r e a  of the internal  
su r face  tends to zero ,  Oi(~) also tends to zero .  The second t e rm ,  which is a function of o~L, defines the 
change in the heat  flow due to  absorb ing  and radia t ing media .  

Fo r  a f lat  l ayer  (~ = 1, 0), when the radia t ion intensi ty at the walls  is l a rge ,  absorpt ion dominates  
natural  radia t ion and the p re sence  of an absorbing  medium leads to a reduct ion in the heat  flow propor t iona l  
to o~L. 

In the case  of a "heated f i lament"  (~ ~ 0) the heat  f lows due to heat  t r ans f e r  between the walls  a r e  
smal l ,  as a r e su l t  of which na tura l  radia t ion dominates  absorpt ion .  Fo r  [ - ~0 - 0.6 the heat  flow is inde-  
pendent of ~ L .  The point ~0 is the s ame  for  all  o~L only for  weak absorpt ion.  As the absorpt ion  i n c r e a s e s ,  
the point [0 is displaced to the left  when the optical  thickness of the layer  i nc rea se s  and the curves  gradual ly  
degenera te  into s t ra igh t  lines pa ra l l e l  to the axis of absc i s s ae ,  since the effect ive the rma l  conductivity need 
not depend on the configuration of the l ayer  for  s t rong  absorpt ion.  

2. The layer  is bounded by walls  with the s ame  re f lec t ive  capabi l i t ies  (Rl = R2 ~ 0). 

On Fig.  2b, ~ is shown as a function of [ for  o~L = 0.2 and var ious  values  of R (R = 0, 0.2, 0.3, 0.5, 
and 0.9). As the re f lec t ive  capabi l i t ies  of the walls  i nc rease  and heat  t r an s f e r  between them d e c r e a s e s ,  
the ro le  of na tura l  radiat ion,  of course ,  i nc r ea se s .  The point ~0 moves  to the r ight .  When R = 0.29, 
~0 = 1.0. When R inc reases  fur ther ,  radia t ion dominates  absorpt ion  throughout the whole region in 
which ~ v a r i e s .  

3. The l ayer  is bounded by walls of different  re f lec t ive  capabi l i t ies  (R l ~ R 2 ~ 0). 
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On Fig. 2c, ~, is shown as a function of ~for  the cases :  D ---- +0.2 (R 1 = 0, R 2 = 0.2); D = -0 .2  (R i = 0.2, 
R 2 = 0) (curves 1,2,3);  D ~ +0.9 (R i = 0, R 2 = 0.9); D = - 0 . 9  (R 1 = 0.9, R 2 = 0) (curves  4, 5, 6). The sign of 
D has a marked effect on the heat flow. An exception is the region of ~ near to 1, where the curves  c o r r e -  
sponding to the same value of D, but with opposite signs, merge  together.  Here the optical proper t ies  of 
the surface,  which has a large a rea  for unit length, have a s t ronger  influence. If, for example, the external 
surface  of the layer  is "blacker" than the internal surface,  the contribution of the natural  radiation is r e -  
duced (the dotted curves 4 and 6). 

It must  also be noted that as AR increases  there is a considerable increase  in the heat flow due to 
natural  radiation although the heat flow due to heat t ransfer  between the walls remains  approximately the 
same.  This is seen f rom a compar ison of the curves Rl = R 2 = 0.9 (Fig.2b) and R 1 = 0, R2 = 0.9 (Fig.2c).  
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N O T A T I O N  

is the absorption coefficient of the medium; 
is the re f rac t ive  index of the medium; 
is Planck 's  function; 
are  the reflect ion factors  of the internal and external cylinders respect ively;  
is the conductive heat flow; 
is the radiat ive heat flow; 
is the radius;  
is the integration variable;  
are  the radii  of the internal and external cylinders respectively;  
is the thickness of the layer;  
is the radiat ion direction vector ;  
a re  angles corresponding to the direction S; 
is the radiat ion intensity; 
is the solid angle; 
is the temperature;  
a re  the tempera tures  of the internal and external cylinders respect ively;  
is the tempera ture  difference; 
is the nondimensional radiative heat flow; 
is a nondimensional coordinate; 
is the nondimensional configuration paramete r ;  
is the molecular  thermal  conductivity of the medium. 
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